Hydrodynamics and Flow
نویسندگان
چکیده
The main purpose of the lecture was to lead students and young post-docs to the frontier of the hydrodynamic description of relativistic heavy-ion collisions (H.I.C.) in order for them to understand talks and posters presented in the Quark Matter 2008 (QM08) conference in Jaipur, India [1]. So the most recent studies were not addressed in this lecture as they would be presented during the QM08 conference itself. Also, we try to give a very pedagogical lecture here. For the readers who may want to study relativistic hydrodynamics and its application to H.I.C. as an advanced course, we strongly recommend them to consult the references. This lecture note is divided into three parts. In the first part we give a brief introduction to relativistic hydrodynamics in the context of H.I.C. In the second part we present the formalism and some fundamental aspects of relativistic ideal and viscous hydrodynamics. In the third part, we start with some basic checks of the fundamental observables followed by discussion of collective flow, in particular elliptic flow, which is one of the most exciting phenomenon in H.I.C. at relativistic energies. Next we discuss how to formulate the hydrodynamic model to describe dynamics of H.I.C. Finally, we conclude the third part of the lecture note by showing some results from ideal hydrodynamics calculations and by comparing them with the experimental data. We use the natural units c = h̄ = kB = 1 and the Minkowski metric g = diag(1,−1,−1,−1) throughout the lecture note.
منابع مشابه
CFD Hydrodynamics Analysis of Syngas Flow in Slurry Bubble Column
In this paper, a CFD model of syngas flow in slurry bubble column was developed. The model is based on an Eulerian-Eulerian approach and includes three phases: slurry of solid particles suspended in paraffin oil and syngas bubbles. Numerical calculations carried out for catalyst particles, bubble coalescence and breakup included bubble-fluid drag force and interfacial area effects. Also, the ef...
متن کاملAnalysis of Magneto-hydrodynamics Jeffery-Hamel Flow with Nanoparticles by Hermite-Padé Approximation
The combined effects of nanoparticle and magnetic field on the nonlinear Jeffery-Hamel flow are analyzed in the present study. The basic governing equations are solved analytically to nonlinear ordinary differential equation using perturbation method together with a semi-numerical analytical technique called Hermite- Padé approximation. The obtained results are well agreed with that of the Adom...
متن کاملNumerical Simulation of Seepage Flow through Dam Foundation Using Smooth Particle Hydrodynamics Method (RESEARCH NOTE)
In this paper, a mesh-free approach called smooth particle hydrodynamics (SPH) is proposed to analyze the seepage problem in porous media. In this method, computational domain is discredited by some nodes, and there is no need for background mesh; therefore, it is a truly meshless method. The method was applied to analyze seepage flow through a concrete dam foundation. Using the SPH method, the...
متن کاملComparing the Behavior Hydrodynamics Flow Over of Type A, B, and C Piano Key Weirs
The piano key weir (PKW) is a new type of hydraulic structure that has been of great interest to designers in recent years. In the present study, steady flow on the types A, B, and C PKWs was studied numerically using the FLOW-3D numerical model. Upon software validation using the experimental data, the 3D flow pattern on the types A, B, and C PKWs was studied, and along with the evaluation of ...
متن کاملNumerical Simulation of Squeezed Flow of a Viscoplastic Material by a Three-step Smoothed Particle Hydrodynamics Method
In the current work, the mesh free Smoothed Particle Hydrodynamics (SPH) method, was employed to numerically investigate the transient flow of a viscoplastic material. Using this method, large deformation of the sample and its free surface boundary were captured without the cumbersome process of the grid generation. This three-step SPH scheme employs an explicit predictor-corrector technique an...
متن کاملNumerical simulation of effect of non-spherical particle shape and bed size on hydrodynamics of packed beds
Fluid flow has a fundamental role in the performance of packed bed reactors. Some related issues, such as pressure drop, are strongly affected by porosity, so non-spherical particles are used in industry for enhancement or creation of the desired porosity. In this study, the effects of particle shape, size, and porosity of the bed on the hydrodynamics of packed beds are investigated with three ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008